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Abstract

Recently deep learning has been successfully adopted in
many applications such as speech recognition and im-
age classification. In this work, we explore the possi-
bility of employing deep learning in graph clustering.
We propose a simple method, which first learns a non-
linear embedding of the original graph by stacked au-
toencoder, and then runs k-means algorithm on the em-
bedding to obtain clustering result. We show that this
simple method has solid theoretical foundation, due to
the similarity between autoencoder and spectral clus-
tering in terms of what they actually optimize. Then,
we demonstrate that the proposed method is more ef-
ficient and flexible than spectral clustering. First, the
computational complexity of autoencoder is much low-
er than spectral clustering: the former can be linear to
the number of nodes in a sparse graph while the lat-
ter is super quadratic due to eigenvalue decomposition.
Second, when additional sparsity constraint is imposed,
we can simply employ the sparse autoencoder develope-
d in the literature of deep learning; however, it is non-
straightforward to implement a sparse spectral method.
The experimental results on various graph datasets show
that the proposed method significantly outperforms con-
ventional spectral clustering, which clearly indicates the
effectiveness of deep learning in graph clustering.

1 Introduction
Deep learning has been a hot topic in the communities
of machine learning and artificial intelligence. Many algo-
rithms, theories, and large-scale training systems towards
deep learning have been developed and successfully adopt-
ed in real tasks, such as speech recognition (Dahl et al.
2012), image classification (Krizhevsky, Sutskever, and Hin-
ton 2012), and natural language processing (Collobert et al.
2011). However, to our knowledge, the adoption of deep
learning in clustering has not been adequately investigated
yet. The goal of this work is to conduct some preliminary
investigations along this direction.

Clustering aims to group similar patterns among massive
data points. Graph clustering is a key branch of clustering,
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which tries to find disjoint partitions of graph nodes such
that the connections between nodes within the same parti-
tion are much denser than those across different partition-
s. On one hand, many real-world problems can be cast as
graph clustering such as image segmentation (Shi and Malik
2000), community detection (Smyth and White 2005), and
VLSI design (Chan, Schlag, and Zien 1994); on the other
hand, it is easy to transform a clustering problem in the vec-
tor space to a clustering problem on the similarity graph built
from the vector representations of the data points. Therefore,
we choose to put our focus on graph clustering in this work,
and in particular, we investigate the use of stacked sparse
autoencoder to perform graph clustering.

Our proposal is motivated by the similarity between au-
toencoder and spectral clustering, a state-of-the-art graph
clustering method, in terms of what they actually optimize.
Among many existing graph clustering algorithms (Karypis
and Kumar 1998)(Shi and Malik 2000) (Van Dongen 2000)
(Dhillon, Guan, and Kulis 2007)(Satuluri and Parthasarathy
2009), spectral clustering has attracted people’s great atten-
tion in the past decades due to its solid theoretical foundation
and global optimal solution. Given an n-node graph, spec-
tral clustering method runs an Eigenvalue Decomposition
(EVD) on the normalized graph Laplacian matrix; then the
eigenvectors corresponding to the k smallest non-zero eigen-
values are extracted as the representation of the graph nodes,
where k is the predefined number of clusters; 1 after that, a
k-means method is run on the graph representations to get
the clusters results.

Note that these k eigenvectors are also the eigenvectors of
the normalized graph similarity matrix, whereas correspond-
ing to its k largest eigenvalues. Therefore these eigenvectors
can be regarded as an encoding of the normalized graph sim-
ilarity matrix, and according to the Eckart-Young-Mirsky
theorem, this encoding can lead to the optimal rank-k recon-
struction of the original normalized graph similarity matrix.
People familiar with autoencoder may immediately realize
that spectral clustering is very similar to autoencoder: au-
toencoder also attempts to find a low-dimensional encoding
of the input data that can keep the most information of the
original set of data through reconstruction. Actually, our the-

1Some researchers also suggest selecting the eigenvectors cor-
responding to the b

√
kc smallest non-zero eigenvalues.



oretical study shows that the objective functions of spectral
clustering and autoencoder are actually very similar when
they are used to solve graph clustering problems (i.e., the re-
construction error of the normalized similarity matrix under
the Frobenuis norm by the encoding), and both of them can
achieve the desired solution when the optimization process-
es are well done.2

While autoencoder is similar to spectral clustering in
theory, it is much more efficient and flexible in practice.
First, as we know, spectral clustering is computationally
expensive because it involves an eigenvalue decomposition
(EVD). The complexity of a straightforward implementation
of EVD is cubic to the number of nodes in the graph, while
even the fastest implementation to our knowledge requires a
super-quadratic computational complexity. In contrast, au-
toencoder is highly efficient due to its back-propagation
framework, whose computational complexity can be linear
to the number of nodes in the graph when the nodes are s-
parsely connected. Second, When dealing with very large-
scale data, we usually hope to get some sparse representa-
tions so as to improve the efficiency of the data processing.
However, the encoding produced by spectral clustering can-
not guarantee the sparsity property because the eigenvectors
of the graph Laplacian are probably very dense. In addition,
it is non-straightforward to incorporate sparsity constraints
into spectral clustering without destroying its nature of be-
ing a spectral method. In contrast, it is very easy to fulfill
the sparsity requirement by using the autoencoder. Actual-
ly, one can simply use the sparse autoencoder developed in
the literature of deep learning for this purpose, which basi-
cally introduces a L1 regularization term to the original ob-
jective function of autoencoder. Furthermore, one can stack
multiple layers of sparse autoencoders, to achieve additional
benefit from deep structures.

Based on the above discussions, we propose a method
called GraphEncoder for graph clustering. First, we feed
the normalized graph similarity matrix into a deep neu-
ral network (DNN) which takes sparse autoencoder as the
building block. Then through a greedy layer-wise pretrain-
ing process, we seek the best non-linear graph representa-
tions that can approximate the input matrix through recon-
struction and achieve the desired sparsity properties. After
stacking several layers of sparse autoencoders, we run k-
means on the sparse encoding output by the final layer to
obtain the clustering results. To verify the effectiveness of
the proposed method, we conducted extensive experiments
on various real-world graph datasets. The experimental re-
sults show that the proposed algorithm can significantly out-
perform the baseline algorithms like spectral clustering. The
results also indicate that the stacked deep structure can boost
the clustering results, i.e., the results become more and more
accurate when going from the shallow layers to the deep lay-
ers.

To the best of our knowledge, this is the first work that
investigates how to use deep learning for graph clustering.

2Note that spectral clustering can obtain the global optimum;
however, autoencoder usually leads to a local optimum due to the
back-propagation algorithm it employs.

It enriches our understanding on the power of deep learn-
ing, by opening a door to use unsupervised pre-training tech-
niques like stacked sparse autoencoder to deal with the clus-
tering problems.

2 Background and Related Work
Given an undirected weighted graph G = (V,E), where V =
{v1,v2, ...,vn} is the node set and E = {ei j} is the edge set,
graph clustering aims to find a disjoint partition {Vi}k

i=1 of
V , where k is cluster number. As has been mentioned be-
fore, our proposed model is highly related to spectral clus-
tering and deep learning, so we will briefly review these two
methods.

2.1 Spectral Clustering
We use S = {si j} to denote the similarity matrix of graph G,
and thus si j (i, j = 1,2, · · · ,n) is the similarity score between
node i and j. Let di = ∑ j si j be the degree of node i, based
on which we measure the capacity of a subset A of V , i.e.,
vol(A) = ∑i∈A di. For any disjoint subsets A,B ⊂ V , we de-
fine link(A,B) = 1

2 ∑i∈A, j∈B si j. One of the commonly-used
clustering objective that spectral clustering aims to minimize
is the Normalized Cut (NCut):

NCut(V1, ...,Vk) =
k

∑
i=1

link(Vi,V̄i)

vol(Vi)
. (1)

Here Vi∩V̄i = /0 and Vi∪V̄i =V . To achieve this goal, spec-
tral clustering converts the above objective function to the
following discrete optimization problem:

min
H∈Rn×k

Trace(HT LH)

s.t. HT DH = I.

Hi j =

{
1/
√

vol(V j), i f vi ∈V j
0, otherwise ,

(i = 1,2, · · · ,n; j = 1,2, · · · ,k);
D = diag(d1,d2, · · · ,dn);
L = D−S.

(2)

Here L is the so-called graph Laplacian matrix. It can be
seen that the discrete optimization problem in (2) is NP-Hard
(Wagner and Wagner 1993). Therefore, spectral clustering
turns to relax the condition in (2) by allowing Hi j to take any
real values. According to some matrix calculus, the solution
yields H to consist the eigenvectors corresponding to the k
smallest non-zero eigenvalues of the normalized Laplacian
matrix D−1L. The final clustering results are then obtained
through running the k-means algorithm on the graph embed-
ding matrix H.

There are works towards efficient implementation of spec-
tral clustering such as (Chen et al. 2011), in which the au-
thors’ aim is to construct a sparse similarity graph as the
input to the parallelized spectral clustering method, where-
as what we aim to achieve is to replace the expensive EVD
in spectral clustering, leading to the difference with former
works.



2.2 Deep Learning
Recently deep learning has won great success in many ap-
plications such as image classification, speech recognition,
and natural language processing (Bengio 2009) (Dahl et al.
2012) (Collobert et al. 2011) (Krizhevsky, Sutskever, and
Hinton 2012). One of the strategies that make training deep
architectures possible and effective is the greedy layerwised
unsupervised pretraining (Hinton and Salakhutdinov 2006)
(Bengio et al. 2007). This strategy aims to learn useful rep-
resentations one layer at a time, and then to set the output
features to be the input of the next layer. Each layer in this
process involves some kind of non-linearity, such as non-
linear activation function (e.g., sigmoid or tanh) or some
regularization on features (e.g., sparsity constraints (Poult-
ney et al. 2006)). By stacking these non-linear single layers
together, deep learning are believed to yield better represen-
tations (Part 4 in (Bengio, Courville, and Vincent 2013)).

In the greedy layerwised pretraining process, autoencoder
(Bourlard and Kamp 1988) (Hinton and Zemel 1994) is
commonly used as a basic unit to generate new represen-
tations in each layer, and it is also the main building block
in our model. In the autoencoder framework, a feature ex-
traction function f (·;θ1) is firstly implemented on original
feature vector xi, i = 1,2, · · · ,n (n is the number of train-
ing samples), yielding a new representation f (xi;θ1). Func-
tion f (·;θ1) is named as encoder. After that, f (xi;θ1) is
transformed back into the input space by another function
g(·;θ2), which is called as decoder. The aim of autoencoder
is to minimize the reconstruction loss between the original
data and the reconstructed data from the new representation-
s, i.e.,

Loss(θ1,θ2) =
N

∑
i=1

l (xi,g( f (xi;θ1);θ2)) . (3)

Here l(·) is the sample-wise loss function. Usually encoder
and decoder are composed of a linear transformation, fol-
lowed by an activation function. That is, f (x;θ1) = f0(Wx+
b), g(x;θ2) = g0(Mx + d), where f0 and g0 are activation
functions like the element-wise sigmoid function. In this
sense, θ1 = {W,b} and θ2 = {M,d} are the parameters to be
learned in the training process. Furthermore, there are work-
s on sparse autoencoder, which aims to penalize the large
hidden layer outputs (Olshausen and Field 1997)(Boureau,
Cun, and others 2007).

3 Model Description
In this section, we introduce our proposed deep learning
method for graph clustering, including the motivation, the
basic building block, and the implementation details.

3.1 Motivation
As mentioned in the introduction, our proposal is motivated
by the similarity between autoencoder and spectral cluster-
ing. To show this, we will first explain spectral clustering
in the viewpoint of matrix reconstruction, and then demon-
strate that autoencoder is a better choice than spectral clus-
tering in the scenario of large-scale graph clustering.

We start with some notations. Let Q = D−1L, where L
is the graph Laplacian matrix and D is the diagonal matrix

with the node degrees in the corresponding diagonal ele-
ments. According to the properties of the Laplacian matrix,
Q is symmetric and its rank is assumed to be n− r, where
r is the number of connected components in the graph G.
We write the eigenvalue decomposition of Q as Q = Y ΛY T ,
where Y ∈ Rn×n stacks the N eigenvectors of Q in columns
and Y TY = I, Λ = diag(λ1,λ2, · · · ,λn), λ1 > λ2 > · · · > λn
are the n eigenvalues of Q. Let Λk denote the diagonal matrix
with the k smallest non-zero eigenvalues in Λ in its diago-
nal elements, and Yk ∈ Rn×k be the matrix containing the k
columns from Y corresponding to the k non-zero eigenval-
ues in Λk. Thus Yk is the embedding matrix used in spectral
clustering when minimizing the normalized cut in order to
cluster the graph nodes into k groups.

Note that the non-zero requirement on the eigenvalues
does not impact the clustering result by much when k is rel-
atively large. The reason is as follows. The zero eigenval-
ue of Q corresponds to the eigenvector with all its elements
equal to 1. If we put this eigenvector into Yk, it will have
no effect on the clustering result except that it will squeeze
out the least informational eigenvector. For simplicity, in the
following discussions we will directly talk about the k s-
mallest eigenvalues in Λ without requiring the eigenvalues
to be non-zero. Further note that Q=D−1L =D−1(D−S) =
I −D−1S. Therefore, the k smallest eigenvalues of Q are
exactly the k largest eigenvalues of the normalized graph
similarity matrix D−1S, and accordingly Yk contains the k
eigenvectors of D−1S corresponding to its k largest eigenval-
ues. The Eckart-Young-Mirsky Theorem (Eckart and Young
1936) explains the reconstruction nature of spectral cluster-
ing, which is related to the low-rank approximation of a ma-
trix.
Theorem 1 (Eckart-Young-Mirsky). For a rank-r matrix
P ∈ Rm×n, with singular value decomposition (SVD) P =
UΣV T , UTU = I, V TV = I; if k < r, we have:

arg min
P̃ ∈ Rm×n

rank(P̃) = k

||P− P̃||F =U Σ̃V T (4)

where Σ̃ is the same matrix as Σ except that it contains only
the k largest singular values and the other singular values
are replaced with 0.

The above theorem shows that the matrix reconstruction
by the truncated largest k singular vectors in SVD is the best
rank-k approximation of the original matrix. Furthermore, if
a matrix Z is symmetric, i.e., Z = PPT , there exists orthog-
onal decomposition Z = UΣ2UT =UΛUT , where UTU = I
and Λ is diagonal matrix with the eigenvalues of Z in the
diagonal elements. This is the well-known fact that the SVD
of a matrix P is highly related to the EVD of the symmetric
matrix PPT . Specifically, for symmetric matrix Z, the ma-
trix reconstruction by the truncated largest k eigenvectors in
EVD is also the best rank-k approximation under the Frobe-
nuis norm. According to the above discussions, we obtain
the following corollary.
Corollary 2 YkΛkY T

k is the best reconstruction of the sym-
metric matrix D−1S in terms of the Frobenuis norm among
all rank-k matrices, where Yk is the embedding matrix in
spectral clustering.



On one hand, Corollary 2 tells us that spectral clustering
can be regarded as a process of matrix reconstruction for
D−1S. From the new embedding matrix Yk obtained through
eigenvalue decomposition, it can build the best rank-k ma-
trix approximation towards the normalized graph similarity
matrix D−1S in terms of Frobenuis norm. On the other hand,
imagine that if we use the normalized graph similarity ma-
trix D−1S as the input feature matrix for an autoencoder, we
are actually also seeking for the best matrix reconstruction
for D−1S in terms of Frobenuis norm by solving the autoen-
coder. That is, both autoencoder and spectral clustering min-
imize the reconstruction error for the original normalized
similarity matrix D−1S. We therefore say that autoencoder
and spectral clustering are similar in terms of what they op-
timize.

While autoencoder is similar to spectral clustering in the-
ory, the former is much more flexible in incorporating addi-
tional constraints. In many real large-scale graph clustering
problems, it is desirable to seek some sparse representation-
s as the graph embedding. On one aspect, this can greatly
improve the efficiency of the system in terms of both stor-
age and data processing. On another aspect, it usually also
improves the clustering accuracy, since it can remove some
noisy information that hurts the clustering results. However,
the embedding produced by spectral clustering cannot guar-
antee the sparsity property since the eigenvectors of Q are
probably very dense. Furthermore, it is non-straightforward
to introduce sparsity constraint to spectral clustering; if we
do it in a stiff way (e.g., directly add a sparsity constraint to
the objective function of spectral clustering), it is very like-
ly that we cannot get a spectral method any more. In sharp
contrast, we will have a much easier life if we use autoen-
coder. That is, we can simply adopt the sparse autoencoder
developed in the literature of deep learning. It basically in-
troduces a sparsity regularization term to the original objec-
tive function of autoencoder and can still benefit from the
efficient back-propagation algorithm for the optimization.
Furthermore, one can stack multiple layers of sparse autoen-
coders, to achieve additional benefit from deep structures.
The above discussions motivate us to adopt an autoencoder-
based method for graph clustering.

3.2 GraphEncoder
In this subsection we introduce the autoencoder-based graph
clustering model called GraphEncoder. In general, the key
component of GraphEncoder is a deep neural network with
sparse autoencoder as its building block. As stated in the
previous sections, given an n-node graph G with its simi-
larity matrix S, we can treat S as the training set contain-
ing n instances s1,s2, · · · ,sn, si ∈ Rn, i = 1,2, · · · ,n. Note
that si = {si j}, j = 1,2, · · · ,n. Then we feed the normalized
training set D−1S into the deep neural network and use the
output features in the deepest layer of DNN as the graph em-
bedding. At last, k-means clustering is implemented on the
graph embedding of G to produce the final clustering result.

Specifically, we consider the autoencoder in each layer
of the deep neural network. Let xi be the i-th input vector
of this layer, and f0 and g0 be the activations of the hid-
den layer and the output layer respectively. We have hi =

Table 1: Clustering with GraphEncoder
Input
n-node graph G, with similarity matrix S ∈ Rn×n and
degree matrix D = diag{d1,d2, · · · ,dn}, where di is the
degree of node i; DNN layers number Γ, with number of
nodes n( j) in layer j; n(1) = n; X ( j) ∈ Rn×n( j)

is the input
to layer j. X (1) = D−1S.
For j = 1 to Γ

1. Build a three layer sparse autoencoder with input data X ( j).
2. Train the sparse autoencoder by optimizing (6) with back-

propagation. Obtain the hidden layer activations h( j).
3. Set X ( j+1) = h( j).
End
Run k-means on XΓ ∈ Rn×n(Γ) .
Output
Final clustering result.

f0(Wxi + b) and yi = g0(Mhi + d), where Θ = {θ1,θ2} =
{W,b,M,d} are the parameters to be learned, f0 and g0
are the non-linear operators such as the sigmoid function
(sigmoid(z) = 1/(1+exp(−z))) or tanh function (tanh(z) =
(ez−e−z)/(ez+e−z)). Then the optimization goal is to min-
imize the reconstruction error between the original data xi
and the reconstructed data yi from the new representation
hi,

arg min
θ∈Θ

n

∑
i=1
||yi− xi||2. (5)

We also impose the sparsity constraints to the activation
in the hidden layer. That is, we add a regularization term to
the reconstruction error in (5),

Loss(θ) =
n

∑
i=1
||yi− xi||2 +βKL(ρ||ρ̂), (6)

where β controls the weight of the sparsity penalty, ρ is set
to be a small constant such as 0.01, ρ̂ = 1

n ∑
n
j=1 h j is the aver-

age of the hidden layer activations, and KL(ρ||ρ̂) is defined
as:

KL(ρ||ρ̂) =
|ρ̂|

∑
j=1

ρlog
ρ

ρ̂ j
+(1−ρ)log

1−ρ

1− ρ̂ j
. (7)

Note that (6) can be solved by standard back-propagation
algorithms. After the training of the current layer is complet-
ed, we use the hidden layer activations as the inputs to train
the next layer. This greedy layer-wise training process forms
the model of the Stacked Sparse Autoencoder (Vincent et al.
2010). When all the layers are trained in this manner, we use
the output of the final layer as the new graph representation
and run k-means on it to get the clustering results. The whole
procedure is summarized as the algorithm in Table 1.

The proposed model GraphEncoder has the following ad-
vantages:
• Usually in autoencoder, the dimension of the hidden lay-

er is lower than that of the input layer. This captures the
intuition that not all edges in the original graph are nec-
essary in clustering. For a certain node, it is possible that
only its relationships with part of the other nodes (e.g., the
nodes with the highest degrees) determine which cluster
it should belong to. The optimization of (5) captures this
useful low dimensional information.



• The sparsity penalty in (6) not only strengthens the re-
quirements of deleting edges as stated above, but also
makes the computation more efficient given the sparsity
target ρ is a small value and the activations approach ze-
ro.

• The stacked structures provide a smooth way of eliminat-
ing edges. Graph representations are expected to become
clearer and clearer for clustering as the training goes from
shallow layers to deep layers. We will use an example in
the experimental session to demonstrate this effect of the
deep structure.

• GraphEncoder is much more efficient than spectral clus-
tering. Spectral clustering relies on EVD. To our knowl-
edge, the computational complexity of the fastest EVD
solver is O(n2.367) where n is the number of nodes in the
graph, when the graph has some special sparse and dense
structure like Toeplitz matrix (Pan and Chen 1999). In
contrast, it is not difficult to see that the complexity of
GraphEncoder is O(ncd), where d is the maximum num-
ber of hidden layer nodes in DNN, and c is the average
degree of the graph. Usually c can be regarded as a fixed
value: for example, in the top-k similarity graph, c = k;
and in a social network graph, c, the average friend num-
ber of people, is also bounded. Parameter d is related to
the predefined number of clusters (more clusters lead to
larger d), but not related to n. Therefore we can regard cd
as some constant that does not increase with n, and the
overall complexity of GraphEncoder is linear to the num-
ber of nodes. In addition, whereas EVD is hard to paral-
lel, the stochastic gradient descent (SGD) (Bottou 1998)
training of DNN is comparatively easy to parallel, as have
been well explored in the literature of DNN.

4 Experimental Evaluation
We report the experimental results in this section. We first
introduce the datasets and the benchmark algorithms used in
the experiments, and then give the experiment settings. After
that, we show the clustering performance of our proposed
clustering algorithm compared with benchmark algorithms.
In addition, we give an example to show the power of deep
structures in clustering.

4.1 Datasets
To test the performance of our DNN-based model, we eval-
uated its performance on several real world datasets.

1. Wine. This is a dataset from UCI Machine Learning
Repository (Asuncion and Newman 2007), consisting of
178 instances with 13 attributes. Every instance corre-
sponds to a certain wine with its chemical analysis infor-
mation as the attributes. All instances are labeled with 3
wine categories. We built a cosine similarity graph using
these instances and used the labels as the groundtruth.

2. 20-Newsgroup. This dataset is a collection of about
20,000 newsgroup documents. The documents are parti-
tioned into 20 different groups according to their topics.
We represented every document as a vector of tf-idf s-
cores of each word and built the cosine similarity graph

based on the tf-idf scores. To demonstrate the robustness
of our algorithms with different targeting cluster number-
s, we constructed three graphs built from 3, 6, and 9 dif-
ferent newsgroups respectively. The newsgroup names in
each graph are listed as the following, where the abbrevi-
ation NG used in graph names is short for Newsgroup.
• 3-NG: corp.graphics, rec.sport.baseball, talk.politics.guns.
• 6-NG: alt.atheism, comp.sys.mac.hardware, rec.motorcycles,

rec.sport.hockey, soc.religion.christian, talk.religion.misc.
• 9-NG: talk.politics.mideast, talk.politics.misc, comp.os.ms-

windows.misc, comp.sys.ibm.pc.hardware, sci.electronics, s-
ci.crypt, sci.med, sci.space, misc.forsale

For each chosen group, we randomly selected 200 doc-
uments from it, and thus the three graphs contain 600,
1,200, and 1,800 nodes respectively. The document labels
are used as the groundtruth.

3. DIP. This is an unweighted protein-protein interaction
(PPI) network from the Database of Interacting Protein-
s (Salwinski et al. 2004). The average degree of nodes is
about 6.

4. BioGrid. The last dataset is another PPI network obtained
from the BioGrid Database (Stark et al. 2011). We re-
moved the nodes without any connections to other nodes
from the original graph and got a final graph of 5,964 n-
odes. The average degree is approximately 65, which is
much higher than that of DIP. We used the protein com-
plex data in CYC2008 (Pu et al. 2009) as the groundtruth
for the two PPI networks.
The detailed information of all these graphs are summa-

rized in Table 2. Since all these datasets have groundtruth,
we evaluated the performance of a clustering algorithm by
the Normalized Mutual Information (NMI) of its clustering
results. The range of NMI values is [0,1]. The higher the
NMI is, the better the corresponding clustering results are.

Table 2: Datasets Information.
Dataset #Nodes Weighted or Not AvgDegree
Wine 178 Weighted Fully Connected
3-NG 600 Weighted Fully Connected
6-NG 1,200 Weighted Fully Connected
9-NG 1,800 Weighted Fully Connected
DIP 4,741 Unweighted 6.4
BioGrid 5,964 Unweighted 64.7

4.2 Benchmark Algorithms
We used the following graph clustering methods as the
benchmark algorithms.

1. Spectral Clustering. We used two versions of spec-
tral clustering: unnormalized spectral clustering
(Von Luxburg 2007), which aims to minimize ratio
cut, and normalized spectral clustering (Shi and Malik
2000), which aims to minimize normalized cut. The better
NMI value output by the two versions was recorded as
the benchmark results.

2. k-means. Our algorithm runs k-means on the new graph
embedding in the deep layers. To show the power of the
deep structures, we also run the k-means algorithm direct-
ly on the original graph (i.e., k-means on the n×n normal-
ized similarity matrix) as a benchmark method.



4.3 Experiment Settings
We implemented GraphEncoder based on Sparse Autoen-
coder (SAE), which is the autoencoder model that penalizes
both the reconstruction error and the sparsity error in the hid-
den layer. In our experiments, we tuned two parameters of
SAE: sparsity penalty, which tradeoffs the weight of the two
errors in the optimization, and sparsity target, which is the
target value that the hidden layer activations aim to reach.

The neural networks for Wine and 3-NG have 3 layers and
the neural networks for all the other graphs have 5 layers.
The number of nodes in each layer are listed in Table 3. All
the neural networks use element-wise sigmoid function as
activations of each layer.

Table 3: Neural Network Structures
Dataset #nodes in each layer
Wine 178-128-64
3-NG 600-512-256
6-NG 1,200-1,024-512-256-128
9-NG 1,800-1,024-512-256-128
DIP 4,741-2,048-1,024-512-256
BioGrid 5,964-2,048-1,024-256-128

For Wine and the three 20-Newsgroup graphs, since their
underlying cluster numbers by the groundtruth labels are s-
mall, we do not vary the target cluster numbers in the exper-
iments. We just set the cluster numbers to their real cluster
numbers, i.e. Wine with 3, the three 20-Newsgroup graphs
with 3, 6, and 9 respectively.

For the two PPI networks, we checked the algorithm per-
formance with various predefined cluster numbers. That is,
we varied the target cluster number from 5 to 400 (with av-
erage interval between two consecutive clustering numbers
to be 50), and plotted the NMI values varying with the target
cluster number for each algorithm.

4.4 Experimental Results
Clustering Performance. The clustering results on Wine
and 20-Newsgroup datasets are summarized in Table 4. It
can be observed that the best performances of each dataset,
listed in bolded digits, are all obtained by GraphEncoder
built on sparse autoencoder.

Table 4: Clustering Results on Wine and 20-Newsgroup.
(Measured by NMI) Wine 3-NG 6-NG 9-NG
Spectral Clustering 0.71 0.60 0.55 0.39

k-means 0.70 0.72 0.26 0.22
SAE 0.84 0.81 0.60 0.41

The experimental results on the two PPI networks are
shown in Figure 1 and Figure 2 respectively, with horizontal
axis to be predefined clusters number, and vertical axis to be
the corresponding NMI value.

We can see that for all the 6 graphs: (i) GraphEncoder
based on sparse autoencoder beats spectral clustering. This
is exactly the empirical justification of our claim that spar-
sity on graph embedding can help to improve clustering re-
sults. (ii) GraphEncoder based on sparse autoencoder beats
k-means directly running on original normalized similarity
graph, showing that deep structures can help to get even bet-
ter graph representations.
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Figure 1: Clustering Results on DIP.
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Figure 2: Clustering Results on BioGrid.

Power of Deep Structures. To show the power of the s-
tacked deep structures, we list the NMI values of k-means
clustering on each layer’s embedding by GraphEncoder in
Table 5, in which we aim to cluster DIP and BioGrid dataset-
s into 50 groups. Note that DNN for both datasets has five
layers, with the shallowest layer to be layer 1 and deepest
layer to be layer 5. The NMI value on layer 1 is exactly the
result of directly running k-means on the input normalized
similarity graph. From Table 5 we can observe that the NMI
values become larger when the layer goes from shallower to
deeper, showing that the deep structures play an important
role in generating good graph representations for clustering.

Table 5: Layer-wise NMI Values on Two PPI Networks with
#cluster= 50.

Layer 1 2 3 4 5
DIP 0.40 0.42 0.45 0.50 0.51

BioGrid 0.55 0.55 0.56 0.58 0.59

5 Conclusion
In this paper, we have proposed a novel graph clustering
method based on deep neural network, which takes the s-
parse autoencoder as its building block. We introduced a
layer-wise pretraining scheme to map the input graph sim-
ilarity matrix to the output graph embedding. Experimental
results on several real world datasets have shown that the
proposed method outperforms several state-of-the-art base-
lines including spectral clustering.
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